Involvement of 5-HT3 receptors in pudendal inhibition of bladder overactivity in cats.
نویسندگان
چکیده
In the present study, the role of 5-HT3 receptors in pudendal neuromodulation of bladder activity and its interaction with opioid receptors were investigated in anesthetized cats. The bladder was distended with either saline to induce normal bladder activity or with 0.25% acetic acid (AA) to induce bladder overactivity. Pudendal afferent nerves were activated by 5-Hz stimulation at multiples of the threshold (T) intensity for the induction of anal twitching. AA irritation significantly reduced bladder capacity to 16.5 ± 3.3% of saline control capacity, whereas pudendal nerve stimulation (PNS) at 1.5-2 and 3-4 T restored the capacity to 82.0 ± 12% (P = 0.0001) and 98.6 ± 15% (P < 0.0001), respectively. Cumulative doses (1-3 mg/kg iv) of ondansetron, a 5-HT3 receptor antagonist, eliminated low-intensity (1.5-2 T) PNS inhibition and reduced high-intensity (3-4 T) PNS inhibition of bladder overactivity. During saline distention, PNS at 1.5-2 and 3-4 T significantly increased bladder capacity to 173.2 ± 26.4% (P = 0.036) and 193.2 ± 22.5% (P = 0.008), respectively, of saline control capacity, but ondansetron (0.003-3 mg/kg iv) did not alter PNS inhibition. Ondansetron (0.1-3 mg/kg) also significantly (P < 0.05) increased control bladder capacity (50-200%) during either AA irritation or saline distention. In both conditions, the effects of low- and high-intensity PNS were not significantly different. After ondansetron (3 mg/kg) treatment, naloxone (1 mg/kg iv) significantly (P < 0.05) decreased control bladder capacity (40-70%) during either AA irritation or saline distention but failed to affect PNS inhibition. This study revealed that activation of 5-HT3 receptors has a role in PNS inhibition of bladder overactivity. It also indicated that 5-HT3 receptor antagonists might be useful for the treatment of overactive bladder symptoms.
منابع مشابه
Glutamatergic Mechanisms Involved in Bladder Overactivity and Pudendal Neuromodulation in Cats.
The involvement of ionotropic glutamate receptors in bladder overactivity and pudendal neuromodulation was determined in α-chloralose anesthetized cats by intravenously administering MK801 (a NMDA receptor antagonist) or CP465022 (an AMPA receptor antagonist). Infusion of 0.5% acetic acid (AA) into the bladder produced bladder overactivity. In the first group of 5 cats, bladder capacity was sig...
متن کاملEffects of duloxetine and WAY100635 on pudendal inhibition of bladder overactivity in cats.
This study was aimed at determining the effect of duloxetine (a serotonin-norepinephrine reuptake inhibitor) on pudendal inhibition of bladder overactivity. Cystometrograms were performed on 15 cats under α-chloralose anesthesia by infusing saline and then 0.25% acetic acid (AA) to induce bladder overactivity. To inhibit bladder overactivity, pudendal nerve stimulation (PNS) at 5 Hz was applied...
متن کاملInvolvement of Methysergide-sensitive 5-ht Receptor in Pudendal Nerve Inhibition of Nociceptive and Non-nociceptive Bladder Activity in Cats
Hypothesis / aims of study Understanding the neurotransmitter mechanisms involved in pudendal nerve inhibition of bladder activity could lead to identify new pharmacological targets for overactive bladder. Currently little is known about the effect of 5-hydroxytryptamine (5-HT) 2 receptor on micturition reflex. This study used methysergide, a non-specific 5-HT2 receptor antagonist, and naloxone...
متن کاملRole of spinal GABAA receptors in pudendal inhibition of nociceptive and nonnociceptive bladder reflexes in cats.
Picrotoxin, an antagonist for γ-aminobutyric acid receptor subtype A (GABAA), was used to investigate the role of GABAA receptors in nociceptive and nonnociceptive reflex bladder activities and pudendal inhibition of these activities in cats under α-chloralose anesthesia. Acetic acid (AA; 0.25%) was used to irritate the bladder and induce nociceptive bladder overactivity, while saline was used ...
متن کاملPropranolol, but not naloxone, enhances spinal reflex bladder activity and reduces pudendal inhibition in cats.
This study examined the role of β-adrenergic and opioid receptors in spinal reflex bladder activity and in the inhibition induced by pudendal nerve stimulation (PNS) or tibial nerve stimulation (TNS). Spinal reflex bladder contractions were induced by intravesical infusion of 0.25% acetic acid in α-chloralose-anesthetized cats after an acute spinal cord transection (SCT) at the thoracic T9/T10 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 305 5 شماره
صفحات -
تاریخ انتشار 2013